
Mining of Massive Datasets

Jure Leskovec, Anand Rajaraman, Jeff Ullman
Stanford University

http://www.mmds.org

Note to other teachers and users of these slides: We would be delighted if you found this our

material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify

them to fit your own needs. If you make use of a significant portion of these slides in your own

lecture, please include this message, or a link to our web site: http://www.mmds.org

High dim.
data

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensional
ity

reduction

Graph
data

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Infinite
data

Filtering
data

streams

Web
advertising

Queries on
streams

Machine
learning
Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

AppsApps

Recommen
der systems

Association
Rules

Duplicate
document
detection

8/11/2014 Jure Leskovec, Stanford C246: Mining Massive Datasets 2

� Would like to do prediction:
estimate a function f(x) so that y = f(x)

� Where y can be:

� Real number: Regression

� Categorical: Classification

� Complex object:

� Ranking of items, Parse tree, etc.

� Data is labeled:

� Have many pairs {(x, y)}

� x … vector of binary, categorical, real valued features

� y … class ({+1, -1}, or a real number)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 3

X Y

X’ Y’

Training and test set

Estimate y = f(x) on X,Y.

Hope that the same f(x)

also works on unseen X’, Y’

� We will talk about the following methods:

� k-Nearest Neighbor (Instance based learning)

� Perceptron and Winnow algorithms

� Support Vector Machines

� Decision trees

� Main question:

How to efficiently train

(build a model/find model parameters)?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 4

� Instance based learning

� Example: Nearest neighbor

� Keep the whole training dataset: {(x, y)}

� A query example (vector) q comes

� Find closest example(s) x*

� Predict y*

� Works both for regression and classification

� Collaborative filtering is an example of k-NN classifier

� Find k most similar people to user x that have rated movie y

� Predict rating yx of x as an average of yk

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 5

� To make Nearest Neighbor work we need 4 things:
� Distance metric:

� Euclidean

� How many neighbors to look at?
� One

� Weighting function (optional):
� Unused

� How to fit with the local points?
� Just predict the same output as the nearest neighbor

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 6

� Distance metric:
� Euclidean

� How many neighbors to look at?
� k

� Weighting function (optional):
� Unused

� How to fit with the local points?
� Just predict the average output among k nearest neighbors

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 7

k=9

� Distance metric:
� Euclidean

� How many neighbors to look at?
� All of them (!)

� Weighting function:

� �� � ���	�	
 ��, �
�� �

� Nearby points to query q are weighted more strongly. Kw…kernel width.

� How to fit with the local points?

� Predict weighted average:
∑ �����∑ ���

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 8

Kw=10 Kw=20 Kw=80

d(xi, q) = 0

w
i

� Given: a set P of n points in Rd

� Goal: Given a query point q

� NN: Find the nearest neighbor p of q in P

� Range search: Find one/all points in P within

distance r from q

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 9

q

p

� Main memory:

� Linear scan

� Tree based:

� Quadtree

� kd-tree

� Hashing:

� Locality-Sensitive Hashing

� Secondary storage:

� R-trees

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 10

� Example: Spam filtering

� Instance space x ∈∈∈∈ X (|X|= n data points)

� Binary or real-valued feature vector x of word

occurrences

� d features (words + other things, d~100,000)

� Class y ∈∈∈∈ Y

� y: Spam (+1), Ham (-1)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 12

� Binary classification:

� Input: Vectors x(j) and labels y(j)

� Vectors x(j) are real valued where � � � �
� Goal: Find vector w = (w1, w2 ,... , wd)

� Each wi is a real number

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 13

f (x) =
+1 if w1 x1 + w2 x2 +. . . wd xd ≥≥≥≥ θθθθ

-1 otherwise{

w ⋅ x = 0 - --
- -

-

-
- -

- -

- -

-

-

θ−⇔

∀⇔

,

1,

ww

xxx
Note:

Decision

boundary

is linear

w

� (very) Loose motivation: Neuron

� Inputs are feature values

� Each feature has a weight wi

� Activation is the sum:

� f(x) = ΣΣΣΣi wi xi = w⋅⋅⋅⋅ x

� If the f(x) is:

� Positive: Predict +1

� Negative: Predict -1

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 14

∑∑∑∑

x1

x2

x3

x4

≥≥≥≥ 0?

w1

w2

w3

w4

viagra
n

ig
e

ri
a

Spam=1

Ham=-1

w

x(1)

x(2)

w⋅⋅⋅⋅x=0

� Perceptron: y’ = sign(w⋅⋅⋅⋅ x)
� How to find parameters w?

� Start with w0 = 0

� Pick training examples x(t) one by one (from disk)

� Predict class of x(t) using current weights

� y’ = sign(w(t)⋅⋅⋅⋅ x(t))

� If y’ is correct (i.e., yt = y’)

� No change: w(t+1) = w(t)

� If y’ is wrong: adjust w(t)

w(t+1) = w(t) + ηηηη ⋅ y (t) ⋅ x(t)

� ηηηη is the learning rate parameter

� x(t) is the t-th training example

� y(t) is true t-th class label ({+1, -1})

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 15

w(t)

 η⋅ η⋅ η⋅ η⋅y(t)⋅⋅⋅⋅x(t)

x(t), y(t)=1

w(t+1)

Note that the Perceptron is

a conservative algorithm: it

ignores samples that it

classifies correctly.

� Perceptron Convergence Theorem:

� If there exist a set of weights that are consistent
(i.e., the data is linearly separable) the Perceptron
learning algorithm will converge

� How long would it take to converge?
� Perceptron Cycling Theorem:

� If the training data is not linearly separable the
Perceptron learning algorithm will eventually
repeat the same set of weights and therefore
enter an infinite loop

� How to provide robustness, more
expressivity?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 16

� Separability: Some parameters get
training set perfectly

� Convergence: If training set is separable,
perceptron will converge

� (Training) Mistake bound:

Number of mistakes � �
γ�

� where � � ����,� |�����|
and � � � 1
� Note we assume x Euclidean length 1, then γ is the

minimum distance of any example to plane u

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 17

� Perceptron will oscillate and won’t converge

� When to stop learning?

� (1) Slowly decrease the learning rate ηηηη

� A classic way is to: ηηηη = c1/(t + c2)

� But, we also need to determine constants c1 and c2

� (2) Stop when the training error stops chaining

� (3) Have a small test dataset and stop when the

test set error stops decreasing

� (4) Stop when we reached some maximum

number of passes over the data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 18

� What if more than 2 classes?

� Weight vector wc for each class c

� Train one class vs. the rest:

� Example: 3-way classification y = {A, B, C}

� Train 3 classifiers: wA: A vs. B,C; wB: B vs. A,C; wC: C vs. A,B

� Calculate activation for each class

f(x,c) = ΣΣΣΣi wc,i xi = wc⋅⋅⋅⋅ x

� Highest activation wins

c = arg maxc f(x,c)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 19

wA

wC

wB

wA⋅⋅⋅⋅x

biggest

wC⋅⋅⋅⋅x

biggest

wB⋅⋅⋅⋅x

biggest

� Overfitting:

� Regularization: If the data

is not separable weights

dance around

� Mediocre generalization:

� Finds a “barely” separating

solution

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 20

� Winnow : Predict f(x) = +1 iff � ⋅ � " #
� Similar to perceptron, just different updates

� Assume x is a real-valued feature vector, � � � �

� w … weights (can never get negative!)

� $��� � ∑ ����� %���������� is the normalizing const.
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 21

• Initialize: # � &
� , � � '

& , … , '&
• For every training example ����

• Compute �) 	� 	*������
• If no mistake (���� � �′): do nothing

• If mistake then: �� ← ��
��� %���������

$���

� About the update: �� ← ��
��� %���������

$���
� If x is false negative, increase wi

� If x is false positive, decrease wi

� In other words: Consider ����� ∈ .	1,/10
� Then ����1�� ∝ ��� ⋅ 34%		45% 			 67	89

�:� � ;�:�
<=><

� Notice: This is a weighted majority algorithm of

“experts” xi agreeing with y

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 22

(promote)

(demote)

� Problem: All wi can only be >0

� Solution:

� For every feature xi, introduce a new feature xi’ = -xi

� Learn Winnow over 2d features

� Example:

� Consider: � � 1, .7, 	.4 ,� � B.5, . 2, 	.3F
� Then new � and � are � � B1, . 7, 	.4,	1,	.7, . 4F,G � B.5, . 2, 0, 0, 0, .3F
� Note this results in the same dot values as if we

used original � and G
� New algorithm is called Balanced Winnow

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 23

� In practice we implement Balanced Winnow:

� 2 weight vectors w+, w-; effective weight is the

difference

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 24

• Classification rule:
• f(x) =+1 if (w+-w-)·x ≥ θ

• Update rule:

• If mistake:

• G�1 ← G�1
��� %���������

$I���
• G�5 ← G�5

��� 5%���������
$J���

$5��� � K����� 	%���������
�

� Thick Separator (aka Perceptron with Margin)

(Applies both to Perceptron and Winnow)

� Set margin

parameter γγγγ

� Update if y=+1

but w ⋅⋅⋅⋅ x < θθθθ + γγγγ

� or if y=-1

but w ⋅⋅⋅⋅ x > θθθθ - γγγγ

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 25

- --
-

-
-

-
- -

-
-

-
-

-

-

Note: γγγγ is a functional margin. Its effect could disappear as w grows.

Nevertheless, this has been shown to be a very effective algorithmic addition.

w

� Setting:

� Examples: � ∈ .L, �0, weights � ∈ M

� Prediction: *��� � /� iff � ⋅ � " # else 	�

� Perceptron: Additive weight update

� If y=+1 but w∙x ≤ θ then wi ← ← ← ← wi + 1 (if xi=1)

� If y=-1 but w∙x > θ then wi ← ← ← ← wi - 1 (if xi=1)

� Winnow: Multiplicative weight update

� If y=+1 but w∙x ≤ θ then wi ← ← ← ← 2 ∙ wi (if xi=1)

� If y=-1 but w∙x > θ then wi ← ← ← ← wi / 2 (if xi=1)
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 26

w ← w + η y x

w ← w exp{η y x}

(promote)

(demote)

(promote)

(demote)

� How to compare learning algorithms?

� Considerations:

� Number of features d is very large

� The instance space is sparse

� Only few features per training example are non-zero

� The model is sparse

� Decisions depend on a small subset of features

� In the “true” model on a few wi are non-zero

� Want to learn from a number of examples that

is small relative to the dimensionality d

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 27

Perceptron
� Online: Can adjust to

changing target, over
time

� Advantages
� Simple

� Guaranteed to learn a
linearly separable problem

� Advantage with few
relevant features per
training example

� Limitations
� Only linear separations

� Only converges for linearly
separable data

� Not really “efficient with
many features”

Winnow
� Online: Can adjust to

changing target, over
time

� Advantages
� Simple

� Guaranteed to learn a
linearly separable problem

� Suitable for problems with
many irrelevant attributes

� Limitations
� Only linear separations

� Only converges for linearly
separable data

� Not really “efficient with
many features”

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 28

� New setting: Online Learning

� Allows for modeling problems where we have

a continuous stream of data

� We want an algorithm to learn from it and slowly

adapt to the changes in data

� Idea: Do slow updates to the model

� Both our methods Perceptron and Winnow make

updates if they misclassify an example

� So: First train the classifier on training data. Then for

every example from the stream, if we misclassify,

update the model (using small learning rate)
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 29

� Protocol:

� User comes and tell us origin and destination

� We offer to ship the package for some money ($10 - $50)

� Based on the price we offer, sometimes the user uses

our service (y = 1), sometimes they don't (y = -1)

� Task: Build an algorithm to optimize what price

we offer to the users

� Features x capture:

� Information about user

� Origin and destination

� Problem: Will user accept the price?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 30

� Model whether user will accept our price:
y = f(x; w)
� Accept: y =1, Not accept: y=-1

� Build this model with say Perceptron or Winnow
� The website that runs continuously
� Online learning algorithm would do something like

� User comes

� She is represented as an (x,y) pair where
� x: Feature vector including price we offer, origin, destination

� y: If they chose to use our service or not

� The algorithm updates w using just the (x,y) pair

� Basically, we update the w parameters every time we get
some new data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 31

� We discard this idea of a data “set”
� Instead we have a continuous stream of data
� Further comments:

� For a major website where you have a massive
stream of data then this kind of algorithm is pretty
reasonable

� Don’t need to deal with all the training data

� If you had a small number of users you could save
their data and then run a normal algorithm on the
full dataset

� Doing multiple passes over the data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 32

� An online algorithm can adapt to changing

user preferences

� For example, over time users may become

more price sensitive

� The algorithm adapts and learns this

� So the system is dynamic

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 33

