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� Would like to do prediction:
estimate a function f(x) so that y = f(x)

� Where y can be:

� Real number: Regression

� Categorical: Classification

� Complex object: 

� Ranking of items, Parse tree, etc.

� Data is labeled:

� Have many pairs {(x, y)}

� x … vector of binary, categorical, real valued features 

� y … class ({+1, -1}, or a real number)
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X Y

X’ Y’

Training and  test set

Estimate y = f(x) on X,Y.

Hope that the same f(x) 

also works on unseen X’, Y’



� We will talk about the following methods:

� k-Nearest Neighbor (Instance based learning)

� Perceptron and Winnow algorithms

� Support Vector Machines

� Decision trees

� Main question:

How to efficiently train 

(build a model/find model parameters)?
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� Instance based learning

� Example: Nearest neighbor

� Keep the whole training dataset: {(x, y)}

� A query example (vector) q comes

� Find closest example(s) x*

� Predict y*

� Works both for regression and classification

� Collaborative filtering is an example of k-NN classifier

� Find k most similar people to user x that have rated movie y

� Predict rating yx of x as an average of yk
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� To make Nearest Neighbor work we need 4 things:
� Distance metric:

� Euclidean

� How many neighbors to look at?
� One

� Weighting function (optional):
� Unused

� How to fit with the local points?
� Just predict the same output as the nearest neighbor

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 6



� Distance metric:
� Euclidean

� How many neighbors to look at?
� k

� Weighting function (optional):
� Unused

� How to fit with the local points?
� Just predict the average output among k nearest neighbors
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� Distance metric:
� Euclidean

� How many neighbors to look at?
� All of them (!)

� Weighting function:

� �� � ���	�	 
 ��,
 �
�� �

� Nearby points to query q are weighted more strongly.  Kw…kernel width.

� How to fit with the local points?

� Predict weighted average: 
∑ �����∑ ���
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� Given: a set P of n points in Rd

� Goal: Given a query point q

� NN: Find the nearest neighbor p of q in P

� Range search: Find one/all points in P within 

distance r from q
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� Main memory:

� Linear scan

� Tree based:

� Quadtree

� kd-tree

� Hashing: 

� Locality-Sensitive Hashing

� Secondary storage:

� R-trees
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� Example: Spam filtering

� Instance space x ∈∈∈∈ X (|X|= n data points)

� Binary or real-valued feature vector x of word 

occurrences 

� d features (words + other things, d~100,000)

� Class y ∈∈∈∈ Y

� y: Spam (+1), Ham (-1)
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� Binary classification:

� Input: Vectors x(j) and labels y(j)

� Vectors x(j)  are real valued where � � � �
� Goal: Find vector  w = (w1, w2 ,... , wd )

� Each wi is a real number 
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� (very) Loose motivation: Neuron

� Inputs are feature values

� Each feature has a weight wi

� Activation is the sum:

� f(x) = ΣΣΣΣi wi xi = w⋅⋅⋅⋅ x 

� If the f(x) is:

� Positive: Predict +1

� Negative: Predict -1
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� Perceptron: y’ = sign(w⋅⋅⋅⋅ x)
� How to find parameters w?

� Start with w0 = 0

� Pick training examples x(t) one by one (from disk)

� Predict class of x(t) using current weights

� y’ = sign(w(t)⋅⋅⋅⋅ x(t))

� If y’ is correct (i.e., yt = y’)

� No change: w(t+1) = w(t)

� If y’ is wrong: adjust w(t)

w(t+1) = w(t) + ηηηη ⋅ y (t) ⋅ x(t)

� ηηηη is the learning rate parameter

� x(t) is the t-th training example

� y(t) is true t-th class label ({+1, -1})
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w(t)

 η⋅ η⋅ η⋅ η⋅y(t)⋅⋅⋅⋅x(t)

x(t), y(t)=1

w(t+1)

Note that the Perceptron is 

a conservative algorithm: it 

ignores samples that it 

classifies correctly.



� Perceptron Convergence Theorem:

� If there exist a set of weights that are consistent 
(i.e., the data is linearly separable) the Perceptron 
learning algorithm will converge

� How long would it take to converge?
� Perceptron Cycling Theorem: 

� If the training data is not linearly separable the 
Perceptron learning algorithm will eventually 
repeat the same set of weights and therefore 
enter an infinite loop

� How to provide robustness, more 
expressivity? 
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� Separability: Some parameters get 
training set perfectly

� Convergence: If training set is separable, 
perceptron will converge

� (Training) Mistake bound:

Number of mistakes � �
γ�

� where � � ����,� |�����|
and � � � 1
� Note we assume x Euclidean length 1, then γ is the 

minimum distance of any example to plane u
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� Perceptron will oscillate and won’t converge

� When to stop learning?

� (1) Slowly decrease the learning rate ηηηη

� A classic way is to: ηηηη = c1/(t + c2)

� But, we also need to determine constants c1 and c2

� (2) Stop when the training error stops chaining

� (3) Have a small test dataset and stop when the 

test set error stops decreasing

� (4) Stop when we reached some maximum 

number of passes over the data
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� What if more than 2 classes?

� Weight vector wc for each class c

� Train one class vs. the rest:

� Example: 3-way classification  y = {A, B, C}

� Train 3 classifiers: wA: A vs. B,C;   wB: B vs. A,C;   wC: C vs. A,B

� Calculate activation for each class

f(x,c) = ΣΣΣΣi wc,i xi =  wc⋅⋅⋅⋅ x

� Highest activation wins

c = arg maxc f(x,c)
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� Overfitting:

� Regularization: If the data 

is not separable weights 

dance around 

� Mediocre generalization:

� Finds a “barely” separating 

solution
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� Winnow : Predict f(x) = +1 iff � ⋅ � " #
� Similar to perceptron, just different updates

� Assume x is a real-valued feature vector, � � � �

� w … weights (can never get negative!)

� $��� � ∑ ����� %���������� is the normalizing const.
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 21

• Initialize: # � &
� , � � '

& , … , '&
• For every training example ����

• Compute �) 	� 	*������
• If no mistake (���� � �′): do nothing

• If mistake then: �� ← ��
��� %���������

$���



� About the update: �� ← ��
��� %���������

$���
� If x is false negative, increase wi

� If x is false positive, decrease wi

� In other words: Consider ����� ∈ .	1,/10
� Then ����1�� ∝ ��� ⋅ 34%		45% 			 67	89

�:� � ;�:�
<=><

� Notice: This is a weighted majority algorithm of 

“experts” xi agreeing with y
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� Problem: All wi can only be >0

� Solution:

� For every feature xi, introduce a new feature xi’ = -xi

� Learn Winnow over 2d features

� Example:

� Consider: � � 1, .7, 	.4 ,� � B.5, . 2, 	.3F
� Then new � and � are � � B1, . 7, 	.4,	1,	.7, . 4F,G � B.5, . 2, 0, 0, 0, .3F
� Note this results in the same dot values as if we 

used original � and G
� New algorithm is called Balanced Winnow
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� In practice we implement Balanced Winnow:

� 2 weight vectors w+, w-; effective weight is the 

difference
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• Classification rule: 
• f(x) =+1 if  (w+-w-)·x ≥ θ

• Update rule:

• If mistake:

• G�1 ← G�1
��� %���������

$I���
• G�5 ← G�5

��� 5%���������
$J���  

$5��� � K����� 	%���������
�



� Thick Separator (aka Perceptron with Margin) 

(Applies both to Perceptron and Winnow)

� Set margin

parameter γγγγ

� Update if y=+1

but w ⋅⋅⋅⋅ x <  θθθθ + γγγγ

� or if y=-1

but w ⋅⋅⋅⋅ x >  θθθθ - γγγγ
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Note: γγγγ is a functional margin. Its effect could disappear as w grows.

Nevertheless, this has been shown to be a very effective algorithmic addition. 

w



� Setting:

� Examples: � ∈ .L, �0, weights � ∈ M

� Prediction: *��� � /� iff � ⋅ � " # else 	�

� Perceptron: Additive weight update

� If y=+1 but w∙x ≤ θ then wi ← ← ← ← wi + 1 (if xi=1)

� If y=-1 but w∙x > θ then wi ← ← ← ← wi - 1 (if xi=1)

� Winnow: Multiplicative weight update

� If y=+1 but w∙x ≤ θ then wi ← ← ← ← 2 ∙ wi (if xi=1)

� If y=-1 but  w∙x > θ then wi ← ← ← ← wi / 2 (if xi=1)
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w ← w + η y x

w ← w exp{η y x}

(promote)

(demote)

(promote)

(demote)



� How to compare learning algorithms?

� Considerations:

� Number of features d is very large

� The instance space is sparse

� Only few features per training example are non-zero

� The model is sparse

� Decisions depend on a small subset of features

� In the “true” model on a few wi are non-zero

� Want  to  learn  from a number of examples that 

is small  relative  to  the  dimensionality d
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Perceptron
� Online: Can adjust to 

changing target, over 
time

� Advantages 
� Simple 

� Guaranteed to learn a 
linearly separable problem 

� Advantage with few 
relevant features per 
training example

� Limitations
� Only linear separations

� Only converges for linearly 
separable data

� Not really “efficient with 
many features”

Winnow
� Online: Can adjust to 

changing target, over 
time

� Advantages
� Simple 

� Guaranteed to learn a 
linearly separable problem 

� Suitable for problems with 
many irrelevant attributes

� Limitations
� Only linear separations

� Only converges for linearly 
separable data

� Not really “efficient with 
many features”
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� New setting: Online Learning

� Allows for modeling problems where we have 

a continuous stream of data 

� We want an algorithm to learn from it and slowly 

adapt to the changes in data

� Idea: Do slow updates to the model

� Both our methods Perceptron and Winnow make 

updates if they misclassify an example

� So: First train the classifier on training data. Then for 

every example from the stream, if we misclassify, 

update the model (using small learning rate)
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� Protocol:

� User comes and tell us origin and destination

� We offer to ship the package for some money ($10 - $50)

� Based on the price we offer, sometimes the user uses 

our service (y = 1), sometimes they don't (y = -1)

� Task: Build an algorithm to optimize what price 

we offer to the users

� Features x capture:

� Information about user

� Origin and destination

� Problem: Will user accept the price?
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� Model whether user will accept our price:
y = f(x; w)
� Accept: y =1, Not accept: y=-1

� Build this model with say Perceptron or Winnow
� The website that runs continuously
� Online learning algorithm would do something like

� User comes

� She is represented as an (x,y) pair where
� x: Feature vector including price we offer, origin, destination

� y: If they chose to use our service or not

� The algorithm updates w using just the (x,y) pair

� Basically, we update the w parameters every time we get 
some new data
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� We discard this idea of a data “set”
� Instead we have a continuous stream of data
� Further comments:

� For a major website where you have a massive 
stream of data then this kind of algorithm is pretty 
reasonable

� Don’t need to deal with all the training data

� If you had a small number of users you could save 
their data and then run a normal algorithm on the 
full dataset

� Doing multiple passes over the data
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� An online algorithm can adapt to changing 

user preferences

� For example, over time users may become 

more price sensitive 

� The algorithm adapts and learns this

� So the system is dynamic
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