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� We often think of networks being organized 

into modules, cluster, communities:
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� Find micro-markets by partitioning the 

query-to-advertiser graph:

advertiser

q
u

e
ry

[Andersen, Lang: Communities from seed sets, 2006]
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� Clusters in Movies-to-Actors graph:

[Andersen, Lang: Communities from seed sets, 2006]
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� Discovering social circles, circles of trust:

[McAuley, Leskovec: Discovering social circles in ego networks, 2012]
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How to find communities?
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We will work with undirected (unweighted) networks



� Edge betweenness: Number of 

shortest paths passing over the edge

� Intuition:
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Edge strengths (call volume) 

in a real network

Edge betweenness

in a real network

b=16
b=7.5



� Divisive hierarchical clustering based on the 

notion of edge betweenness:

Number of shortest paths passing through the edge

� Girvan-Newman Algorithm:
� Undirected unweighted networks

� Repeat until no edges are left:

� Calculate betweenness of edges

� Remove edges with highest betweenness

� Connected components are communities

� Gives a hierarchical decomposition of the network
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[Girvan-Newman ‘02]
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Need to re-compute 

betweenness at 

every step
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Step 1: Step 2:

Step 3: Hierarchical network decomposition:
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Communities in physics collaborations 



� Zachary’s Karate club: 

Hierarchical decomposition

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 13



1. How to compute betweenness?

2. How to select the number of 

clusters?
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� Want to compute 

betweenness of 

paths starting at 

node �
� Breath first search 

starting from �:
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� Count the number of shortest paths from � to all other nodes of the network:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 16



� Compute betweenness by working up the 

tree: If there are multiple paths count them 

fractionally
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1 path to K.

Split evenly

1+0.5 paths to J

Split 1:2

1+1 paths to H

Split evenly

The algorithm:
•Add edge flows:

-- node flow = 

1+∑child edges 

-- split the flow up 

based on the parent 

value

• Repeat the BFS 

procedure for each 

starting node �



� Compute betweenness by working up the 

tree: If there are multiple paths count them 

fractionally
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1 path to K.

Split evenly

1+0.5 paths to J

Split 1:2

1+1 paths to H

Split evenly

The algorithm:
•Add edge flows:

-- node flow = 

1+∑child edges 

-- split the flow up 

based on the parent 

value

• Repeat the BFS 

procedure for each 

starting node �



1. How to compute betweenness?

2. How to select the number of 

clusters?
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� Communities: sets of 

tightly connected nodes

� Define: Modularity �
� A measure of how well 

a network is partitioned 

into communities

� Given a partitioning of the 

network into groups �	∈	�:

Q  ∝ ∝ ∝ ∝ ∑s∈∈∈∈ S [ (# edges within group s) –

(expected # edges within group s) ]
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Need a null model!



� Given real � on � nodes and 	 edges, 

construct rewired network �’
� Same degree distribution but 

random connections

� Consider �’ as a multigraph

� The expected number of edges between nodes � and � of degrees 
�	and 
� equals to: 
� ⋅ 
��	 � 
�
��	
� The expected number of edges in (multigraph) G’:

� � ��∑ ∑ 
�
��	�∈��∈� � �� ⋅ ��	∑ 
� ∑ 
��∈��∈� �
� 	� ��	�	 ⋅ �	 � 	
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� Modularity of partitioning S of graph G:

� Q ∝∝∝∝ ∑s∈∈∈∈ S [ (# edges within group s) –

(expected # edges within group s) ]

� � �, � � ��	∑ ∑ ∑ ��� � 
�
��	�∈��∈��∈�
� Modularity values take range [−1,1]

� It is positive if the number of edges within 

groups exceeds the expected number

� 0.3-0.7<Q means significant community structure
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Aij = 1 if i→j, 

0 else
Normalizing cost.: -1<Q<1



� Modularity is useful for selecting the 

number of clusters:
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Next time: Why not optimize Modularity directly?

Q





� Undirected graph ���,  !:
� Bi-partitioning task:

� Divide vertices into two disjoint groups �,#

� Questions:

� How can we define a “good” partition of �?

� How can we efficiently identify such a partition?
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� What makes a good partition?

� Maximize the number of within-group 

connections

� Minimize the number of between-group 

connections

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 26

1

3

2

5

4
6

A B



A B

� Express partitioning objectives as a function 

of the “edge cut” of the partition

� Cut: Set of edges with only one vertex in a 

group:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 27
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� Criterion: Minimum-cut

� Minimize weight of connections between groups

� Degenerate case:

� Problem:

� Only considers external cluster connections

� Does not consider internal cluster connectivity
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arg minA,B cut(A,B)

“Optimal cut”

Minimum cut



� Criterion: Normalized-cut [Shi-Malik, ’97]

� Connectivity between groups relative to the 

density of each group

$%&��!: total weight of the edges with at least 

one endpoint in �: $%& � � ∑ 
��∈�
� Why use this criterion?

� Produces more balanced partitions

� How do we efficiently find a good partition?

� Problem: Computing optimal cut is NP-hard
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[Shi-Malik]



� A: adjacency matrix of undirected G

� Aij =1 if ��, �! is an edge, else 0

� x is a vector in ℜn with components �'�, … , '�!
� Think of it as a label/value of each node of �

� What is the meaning of A⋅⋅⋅⋅ x?

� Entry yi is a sum of labels xj of neighbors of i
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� jth coordinate of A⋅⋅⋅⋅ x :

� Sum of the x-values 

of neighbors of j

� Make this a new value at node j

� Spectral Graph Theory:

� Analyze the “spectrum” of matrix representing �
� Spectrum: Eigenvectors '� of a graph, ordered by 

the magnitude (strength) of their corresponding 

eigenvalues )�:
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� ⋅ ' � ) ⋅ '



� Suppose all nodes in � have degree *
and � is connected

� What are some eigenvalues/vectors of �? 	�⋅	'	 � ) ⋅ ' What is λλλλ?  What x?

� Let’s try: '	 � 	 ��, �, … , �!
� Then: � ⋅ '	 � *, *, … , * � ) ⋅ '.  So: ) � *
� We found eigenpair of �: '	 � 	 ��, �, … , �!, ) � *
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Remember the meaning of + � �⋅	':



� G is d-regular connected, A is its adjacency matrix
� Claim: 

� d is largest eigenvalue of A, 

� d has multiplicity of 1 (there is only 1 eigenvector 
associated with eigenvalue d)

� Proof: Why no eigenvalue *, - *?

� To obtain d we needed '� � '� for every ., /
� This means ' � 0 ⋅ �1,1,… , 1! for some const. 0
� Define: � = nodes � with maximum possible value of '�
� Then consider some vector + which is not a multiple of 

vector ��,… , �!. So not all nodes � (with labels +� ) are in �
� Consider some node	� ∈ 	� and a neighbor � ∉ � then 

node � gets a value strictly less than *
� So 3	is not eigenvector! And so * is the largest eigenvalue!
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Details!



� What if � is not connected?

� � has 2 components, each *-regular

� What are some eigenvectors?

� ' � Put all �s on � and 4s on # or vice versa

� '′ � ��,… , �, 4, … , 4! then 6 ⋅ '′ � *,… , *, 4, … , 4
� '′′ � �4,… , 4, �, … , �! then � ⋅ '′′ � �4,… , 4, *,… , *!
� And so in both cases the corresponding ) � *

� A bit of intuition:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 34

A B

A B

)� � )�7�

|A| |B|

A B

)� � )�7� 8 4
2nd largest eigval. 9:7;	now has

value very close

to 9:



� More intuition:

� If the graph is connected (right  example) then we 
already know that '� � ��,…�! is an eigenvector

� Since eigenvectors are orthogonal then the 
components of '�7� sum to 0.

� Why? Because '� ⋅ '�7� � ∑ '� � ⋅ '�7�<�=�
� So we can look at the eigenvector of the 2nd largest 

eigenvalue and declare nodes with positive label in A 
and negative label in B. 

� But there is still lots to sort out.
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A B

)� � )�7�
A B

)� � )�7� 8 4
2nd largest eigval. 9:7;	now has

value very close

to 9:



� Adjacency matrix (A):

� n×××× n matrix

� A=[aij], aij=1 if edge between node i and j

� Important properties: 

� Symmetric matrix

� Eigenvectors are real and orthogonal
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1
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4
6

1 2 3 4 5 6

1 0 1 1 0 1 0

2 1 0 1 0 0 0

3 1 1 0 1 0 0

4 0 0 1 0 1 1

5 1 0 0 1 0 1

6 0 0 0 1 1 0



� Degree matrix (D):

� n×××× n diagonal matrix

� D=[dii], dii = degree of node i
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1 2 3 4 5 6

1 3 0 0 0 0 0

2 0 2 0 0 0 0

3 0 0 3 0 0 0

4 0 0 0 3 0 0

5 0 0 0 0 3 0

6 0 0 0 0 0 2



� Laplacian matrix (L):

� n×××× n symmetric matrix

� What is trivial eigenpair?

� ' � ��,… , �! then > ⋅ ' � 4 and so ) � )� � 4
� Important properties:

� Eigenvalues are non-negative real numbers

� Eigenvectors are real and orthogonal
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>	 � 	?	 � 	�
1

3

2

5

4
6

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2



(a) All eigenvalues are @ 0
(b) BCDB � ∑ DEFBEBFEF @ 0 for every B
(c) D	 � 	GC ⋅ G
� That is, D is positive semi-definite

� Proof:

� (c)⇒⇒⇒⇒(b): BCDB � BCGCGB � BG C GB @ 0
� As it is just the square of length of GB

� (b)⇒⇒⇒⇒(a): Let ) be an eigenvalue of >. Then by (b)BCDB @ 0 so BCDB � BC9B � 9BCB⇒⇒⇒⇒ ) @ 4
� (a)⇒⇒⇒⇒(c): is also easy! Do it yourself.
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� Fact: For symmetric matrix M:

� What is the meaning of min xT L x on G?

� xIL	x � ∑ DEF:E,FK; BEBF � ∑ LEF � MEF:E,FK; BEBF
� � ∑ LEEBENE � ∑ 2BEBFE,F ∈O
� � ∑ �BEN P BFN � 2BEBF!E,F ∈O � ∑ '� � '� ��,� ∈ 
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xx

xMx
T

T

x

 
min2 =λ

Node � has degree *�. So, value '�� needs to be summed up *� times.

But each edge ��, �! has two endpoints so we need '�� P'��



� Write B in axes of eigenvecotrs Q;, QN, … , Q: of R. So, B � ∑ SEQE:E
� Then we get: TB � ∑ SETQEE � ∑ SE9EQEE
� So, what is 'UR'?

� BCTB � ∑ SEQEE ∑ SE9EQEE � ∑ SE9FSFQEQFEF� ∑ SE9EQEQEE � ∑ )�V���
� To minimize this over all unit vectors x orthogonal to: 

w = min over choices of �S;, … S:! so that:∑SEN � 1 (unit length) ∑SE � 0 (orthogonal to Q;)

� To minimize this, set V� � � and so ∑ )�V�� � )��
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xx

xMx
T

T

x

 
min2 =λ

)�W� � 4 if � X �
1 otherwise

Details!



� What else do we know about x?

� ' is unit vector: ∑ '�� � ��
� ' is orthogonal to 1st eigenvector ��,… , �!	thus: ∑ '� ⋅ �� � ∑ '�� � 4

� Remember:
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∑
∑ −

=
∈

2

2

),(

2
 

)(
min

ii

jiEji

x

xx
λ

All labelings

of nodes . so 

that ∑BE � 0
We want to assign values '� to nodes i such 

that few edges cross 0.

(we want xi and xj to subtract each other)

BE 0

xBF
Balance to minimize



� Back to finding the optimal cut

� Express partition (A,B) as a vector+� � YP���					�Z	� ∈ ��Z	� ∈ #
� We can minimize the cut of the partition by 

finding a non-trivial vector x that minimizes:
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3E � �1 0 3F � P1Can’t solve exactly. Let’s relax + and
allow it to take any real value.
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� )� � [\]+ Z + : The minimum value of Z�+! is 

given by the 2nd smallest eigenvalue λ2 of the 

Laplacian matrix L

� ^ � _`a[\]b Z + : The optimal solution for y

is given by the corresponding eigenvector ', 

referred as the Fiedler vector

BE 0 xBF



� Suppose there is a partition of G into A and B 

where M c |e|, s.t. V � �#	ghigj	klmn	o	pm	q!o
then 2V @ )�
� This is the approximation guarantee of the spectral 

clustering. It says the cut spectral finds is at most 2
away from the optimal one of score V.

� Proof: 

� Let: a=|A|, b=|B| and e= # edges from A to B

� Enough to choose some '� based on A and B such 

that: 9N c ∑ rs7rt u
∑ rsus c 2S (while also ∑ BE � 0E )
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Details!

)� is only smaller 



� Proof (continued): 

� 1) Let’s set: '� � v� �wP �x					�Z	� ∈ ��Z	� ∈ #
� Let’s quickly verify that ∑ BE � 0: 	y � ;z P { ;| � 4E

� 2) Then:
∑ rs7rt u
∑ rsus � ∑ }~�}� us∈�,t∈�z 7}� u�| }~ u � g⋅ }��}~ u

}��}~ �
� ;z P ;| c � ;z P ;z c � �w � �V
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Details!

Which proves that the cost 

achieved by spectral is better 

than twice the OPT cost
e … number of edges between A and B



� Putting it all together:�V @ )� @ V��
	w'
� where �nzr is the maximum node degree 

in the graph

� Note we only provide the 1st part: �V @ )�
� We did not prove )� @ V��
	w'

� Overall this always certifies that )� always gives a 

useful bound
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Details!



� How to define a “good” partition of a graph?

� Minimize a given graph cut criterion

� How to efficiently identify such a partition?

� Approximate using information provided by the 

eigenvalues and eigenvectors of a graph

� Spectral Clustering
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� Three basic stages:

� 1) Pre-processing

� Construct a matrix representation of the graph

� 2) Decomposition

� Compute eigenvalues and eigenvectors of the matrix

� Map each point to a lower-dimensional representation 

based on one or more eigenvectors

� 3) Grouping

� Assign points to two or more clusters, based on the new 

representation
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� 1) Pre-processing:
� Build Laplacian

matrix L of the 
graph

� 2)
Decomposition:
� Find eigenvalues λλλλ

and eigenvectors x
of the matrix L

� Map vertices to 
corresponding 
components of λλλλ2
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How do we now 

find the clusters?

-0.66

-0.35

-0.34

0.33

0.62

0.31

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2



� 3) Grouping:
� Sort components of reduced 1-dimensional vector

� Identify clusters by splitting the sorted vector in two
� How to choose a splitting point?

� Naïve approaches: 
� Split at 0 or median value

� More expensive approaches:
� Attempt to minimize normalized cut in 1-dimension 

(sweep over ordering of nodes induced by the eigenvector)
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-0.66

-0.35

-0.34

0.33

0.62

0.31 Split at 0:

Cluster A: Positive points

Cluster B: Negative points

0.33
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0.31

-0.66

-0.35

-0.34

A B
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Components of x1

Components of x3



� How do we partition a graph into k clusters?

� Two basic approaches:

� Recursive bi-partitioning [Hagen et al., ’92]

� Recursively apply bi-partitioning algorithm in a 

hierarchical divisive manner

� Disadvantages: Inefficient, unstable

� Cluster multiple eigenvectors [Shi-Malik, ’00]

� Build a reduced space from multiple eigenvectors

� Commonly used in recent papers

� A preferable approach…
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� Approximates the optimal cut [Shi-Malik, ’00]
� Can be used to approximate optimal k-way normalized 

cut
� Emphasizes cohesive clusters

� Increases the unevenness in the distribution of the data

� Associations between similar points are amplified, 
associations between dissimilar points are attenuated

� The data begins to “approximate a clustering”
� Well-separated space

� Transforms data to a new “embedded space”, 
consisting of k orthogonal basis vectors

� Multiple eigenvectors prevent instability due to 
information loss
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� Searching for small communities in 

the Web graph

� What is the signature of a community / 

discussion in a Web graph?

[Kumar et al. ‘99]

Dense 2-layer graph

Intuition: Many people all talking about the same things

… …
Use this to define “topics”:

What the same people on 

the left talk about on the right

Remember HITS!
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� A more well-defined problem:

Enumerate complete bipartite subgraphs Ks,t
� Where Ks,t : s nodes on the “left” where each links 

to the same t other nodes on the “right”

K3,4

|X| = s = 3

|Y| = t = 4
X Y

Fully connected
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� Market basket analysis. Setting:

� Market: Universe U of n items

� Baskets: m subsets of U: S1, S2, …, Sm ⊆⊆⊆⊆ U

(Si is a set of items one person bought)

� Support: Frequency threshold f

� Goal:

� Find all subsets T s.t. T ⊆⊆⊆⊆ Si of at least  f sets Si

(items in T were bought together at least f times)

� What’s the connection between the 

itemsets and complete bipartite graphs?

[Agrawal-Srikant ‘99]
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Frequent itemsets = complete bipartite graphs!

� How?

� View each node i as a 
set Si of nodes i points to

� Ks,t = a set Y of size t
that occurs in s sets Si

� Looking for Ks,t� set of 
frequency threshold to s
and look at layer t – all 
frequent sets of size t

[Kumar et al. ‘99]

i
b

c

d

a

Si={a,b,c,d}

j

i

k

b

c

d

a

X Y

s … minimum support (|X|=s)

t … itemset size (|Y|=t)
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[Kumar et al. ‘99]

i
b

c

d

a

Si={a,b,c,d}

x

y

z

b

c

a

X Y

Find frequent itemsets:

s … minimum support

t … itemset size

x
b

c

a

We found Ks,t! 

Ks,t = a set Y of size t

that occurs in s sets Si

View each node i as a 

set Si of nodes i points to

Say we find a frequent 

itemset Y={a,b,c} of supp s

So, there are s nodes that 

link to all of {a,b,c}:

z
a

b

c

y
b

c

a
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� Support threshold s=2

� {b,d}: support 3

� {e,f}: support 2

� And we just found 2 bipartite 

subgraphs:

c

a b

d

f

Itemsets:

a = {b,c,d}

b = {d}

c = {b,d,e,f}

d = {e,f}

e = {b,d}

f  = {}

e

c

a b

d

e

c

d

f
e
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� Example of a community from a web graph

Nodes on the right Nodes on the left

[Kumar, Raghavan, Rajagopalan, Tomkins: Trawling the Web for emerging cyber-communities 1999]
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