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Example: Recommender Systems

Customer X CustomerY
Buys Metallica CD Does search on Metallica

Recommender system
suggests Megadeth from
data collected about
customer X
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Recommendations

Search

Exam P les: P
amazon.com. A

@ StumbleUpon
NETELIX

[] delici
el.icio.us
|
Recommendations

movielens
helping you find the right movies

v
> lost-fm Google
Products, web sites, the social music revolution News
m blogs, news items, ...
Youll} Cive
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From Scarcity to Abundance

Shelf space is a scarce commodity for
traditional retailers

Also: TV networks, movie theaters,...

Web enables near-zero-cost dissemination
of information about products

From scarcity to abundance

More choice necessitates better filters
Recommendation engines

How Into Thin Air made Touching the Void
a bestseller: http://www.wired.com/wired/archive/12.10/tail.html
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Sidenote: The Long Tall

RHAPSODY AMAZON.COM [  NETFLIX |
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735,000 songs 2.3 million books : 25,000 DYDs More than 40,000 documentaries have
: : been released, according to the Internet
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s : 40 percent, Netflix stocks 3 percent, and the
. : average Blockbuster just .2 percent.

pest :

Wl Mart :
Wesw: 30000 sengs ;

pecal
Bunes & Nobe  ©
Wiaew 130,000 hovdn ;

Netflix Local Blockbuster
OBSCURE PRODUCTS YOU CAN'T GET ANYWHERE BUT ONLINE

Songs : :
available at TOTAL SALES  TOTALSALES i TOTAL SALES

= hoth Wal-Mart .

) ‘and Rhapsody

Songs
available only
on Rhapsody

>
=
©
A
=3
©
£
e
=
©
-
-t
c
©
=
L
®
=
»
>
[
a
e
©
e
®
S
E
S
c
©
=)
©
e
S
<

100,000 200,000 500,000
Titles ranked by popularity

Sources: Erik Brynjolfsson and Jeffrey Hu, MIT, and Michael Smith, Carnegie Mellon; Barnes & Noble; Netflix; RealNetworks
Source: Chris Anderson (2004)
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Physical vs. Online

k. Profit threshold
Beyond bricks and mortar there are main retail for physical stores
I I RO (like Tower Records)

Profit threshold for stores
with no retail overhead
(like Amazon.com)

Profit threshold for stores

with no physical goods
{like Rhapsody)

Just as lower prices can entice
consumers down the Long Tail,
recommendation engines drive
them to obscure content they
might not find otherwise.

Amazon sales rank

Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!
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Types of Recommendations

Editorial and hand curated
List of favorites
Lists of “essential” items

Simple aggregates
Top 10, Most Popular, Recent Uploads

Tailored to individual users

Amazon, Netflix, ...
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Formal Model

X = set of Customers
S = set of Items

Utility functionu: X* S 2> R
R = set of ratings
R is a totally ordered set
e.g., 0-5 stars, real numberin [0,1]



Utility Matrix

Avatar LOTR Matrix Pirates

Alice 1 O. 2
Pob 0.5 0.3
ol ().2 1

David O. 4
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Key Problems

(1) Gathering “known” ratings for matrix
How to collect the data in the utility matrix

(2) Extrapolate unknown ratings from the
known ones

Mainly interested in high unknown ratings

We are not interested in knowing what you don’t like
but what you like

(3) Evaluating extrapolation methods

How to measure success/performance of
recommendation methods
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(1) Gathering Ratings

Explicit
Ask people to rate items

Doesn’t work well in practice — people
can’t be bothered

Implicit
Learn ratings from user actions
E.g., purchase implies high rating
What about low ratings?
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(2) Extrapolating Utilities

Key problem: Utility matrix U is sparse
Most people have not rated most items
Cold start:

New items have no ratings
New users have no history

Three approaches to recommender systems:

1) Content-based '
2) Collaborative TOday'

3) Latent factor based
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Content-based
Recommender Systems




Content-based Recommendations

Main idea: Recommend items to customer x
similar to previous items rated highly by x

Example:
Movie recommendations

Recommend movies with same actor(s),
director, genre, ...

Websites, blogs, news

Recommend other sites with “similar” content
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Plan of Action

Item profiles
‘ likes >
N |
\

QA

build
recommend
. ‘ match Red
< | Circles
. . Triangles

User profile
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Iltem Profiles

For each item, create an item profile

Profile is a set (vector) of features
Movies: author, title, actor, director,...

Text: Set of “important” words in document

How to pick important features?

Usual heuristic from text mining is TF-IDF
(Term frequency * Inverse Doc Frequency)
Term ... Feature
Document ... ltem
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Sidenote: TF-IDF

f; = frequency of term (feature) i in doc (item) j

TE. . — fl] Note: we normalize TF
] 7 max : to discount for “longer”
k fkj documents

n; = number of docs that mention term i
N = total number of docs

IDF; = log nﬂ
(2
TF-IDF score: w;; = TF; x IDF,

Doc profile = set of words with highest TF-IDF
scores, together with their scores
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User Profiles and Prediction

User profile possibilities:
Weighted average of rated item profiles

Variation: weight by difference from average
rating for item

Prediction heuristic:

Given user profile x and item profile i, estimate
u(x,f) = cos(xd) = xi/| [xf|-| /7]
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Pros: Content-based Approach

+: No need for data on other users
No cold-start or sparsity problems

+: Able to recommend to users with

unique tastes

+: Able to recommend new & unpopular items
No first-rater problem

+: Able to provide explanations

Can provide explanations of recommended items by
listing content-features that caused an item to be
recommended
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Cons: Content-based Approach

—: Finding the appropriate features is hard
E.g., Images, movies, music

—: Recommendations for new users
How to build a user profile?

—: Overspecialization

Never recommends items outside user’s
content profile

People might have multiple interests
Unable to exploit quality judgments of other users
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Collaborative Filtering

Harnessing quality judgments of other users




Collaborative Filtering

Consider user x

. .‘ ro. | D prefer
] ! ' ence

Find set N of other T similar
users whose ratings

o o X
dre ”SImIIar” to recommendation Q‘(e‘ie/ »

: - ‘s o
X’s ratings ' 4 N

recommended
: _ ivems +search

Estimate x’s ratings [:—1——-]
based on ratings R

of usersin N
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Finding “Similar” Users

Let r, be the vector of user x’s ratings
Jaccard similarity measure I\, 1, as sets:

Problem: Ignores the value of the rating r,={1,3,4)
Cosine similarity measure

sim(x, y) = cos(r,, r,) = rix-rdy /|| rix |||l il 8'"133}

Problem: Treats missing ratings as ”negati\,'cf“’ %220
Pearson correlation coefficient

S,, = items rated by both users x and y

Mo Ty ... avg.

rating of X,y
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Cosine sim:

Similarity Metric

HP1 HP2 HP3 TW SW1 SW2 §SW3
A 4 5 1
B 5 5 4
C 2 4 5
D 3 3

Intuitively we want: sim(A, B) > sim(A, C)

Jaccard similarity: 1/5 < 2/4

Cosine similarity: 0.386 > 0.322
Considers missing ratings as “negati
Solution: subtract the (row) mean

Ve”

sim A,B vs. A,C:

HP1 HP2 HP3 TW SW1 SW2 §SW3
A | 2/3 5/3 —T7/3
B 1/3 1/3 -2/3
C —5/3 1/3  4/3
D 0
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0.092 > -0.559

Notice cosine sim. is
correlation when
data is centered at O
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Rating Predictions

From similarity metric to recommendations:
Let r, be the vector of user x’s ratings
Let N be the set of k users most similar to x
who have rated item i
Prediction for item s of user x:

Other options?
Many other tricks possible...
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ltem-Item Collaborative Filtering

So far: User-user collaborative filtering
Another view: Item-item

For item i, find other similar items

Estimate rating for item i based
on ratings for similar items

Can use same similarity metrics and
prediction functions as in user-user model

_ EJEN(i;X) S Ty

xi q s;;-.. similarity of items i and j
JEN(i;x) Y r,;...rating of user u on item j

N(i;x)... set items rated by x similar to i
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ltem-Item CF (|N|=2)

movies

users

3 |4 |5 |6 |7 |8 |9 |10|11 |12
3 9) 9) 4
5 |4 4 2 |1 |3

1 12 3 4 |3 |5
4 S 4 2
4 |3 (4 |2 2 |5
3 3 2 4

- unknown rating - rating between 1to 5
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ltem-Item CF (|N|=2)

movies

users
2 |3 |4 |5 |6 |7 |8 |9 [10]11]12
3 5 5 4
5 |4 4 2 |1 |3
4 1 |2 3 4 |3 |5
2 |4 5 4 2
4 |3 |4 |2 2 |5
3 3 2 4

. - estimate rating of movie 1 by user 5
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ltem-Item CF (|N|=2)

movies

users

> |3 14 |5 |6 |7 |8 10 |11 12
: 3 5 4
2 5 |4 4 > [1 |3
3 4 : 3 3 |5
4 > |4 5 4 2
5 4 [3 |4 |2 > |5
6 3 2 4

Neighbor selection:
|dentify movies similar to
movie 1, rated by user 5

-0.31

0.59

Here we use Pearson correlation as similarity:
1) Subtract mean rating m; from each movie i
m,= (1+3+5+5+4)/5 = 3.6
row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
2) Compute cosine similarities between rows
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ltem-Item CF (|N|=2)

movies

users

112 |3 |4 |5 |6 |7 |8 |9 [10]11]12
1[4 3 5 5 4
2 5 |4 4 > 1 |3
3 [2 [4 : 3 4 3 |5
4 > |4 5 4 2
5 4 3 |4 |2 > |5
6 |1 3 2 4

Compute similarity weights:
s,3=0.41, s, ;=0.99
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ltem-Item CF (|N|=2)

movies

users

1 3 5 |6 8 10 [11 |12
1[4 3 5 4
2 5 > |1 |3
3 |2 3 |5
4 4 5 4 2
5 4 4 |2 > |5
6 |1 3 2 4

Predict by taking weighted average:
r,s=(0.41*2 + 0.59*3) / (0.41+0.59) = 2.6
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Befqre:
CF: Common Practice - g™

Xi

EjEN(z:x) %

Define similarity s; of items i and j
Select k nearest neighbors N(i; x)

ltems most similar to i, that were rated by x

Estimate rating r,; as the weighted average:

- Zb o+ EjEN(i;x) s (1 =by)

Xl Xl S
EJ’EN(i;x) y

baseline estimate forr,;

u

= overall mean movie rating
blxi=p+blx+bli b, =

rating deviation of user x
= (avg. rating of user x) — u
b, = rating deviation of movie i
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ltem-ltem vs. User-User

Avatar LOTR Matrix Pirates

mee ] 0.8

0.5 0.3
o 0.9 1 08
1 04

In practice, it has been observed that item-item
often works better than user-user
Why? Items are simpler, users have multiple tastes
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Pros/Cons of Collaborative Filtering

+ Works for any kind of item

No feature selection needed
- Cold Start:

Need enough users in the system to find a match
- Sparsity:

The user/ratings matrix is sparse

I-]ard to find users that have rated the same items
- First rater:

Cannot recommend an item that has not been
previously rated

New items, Esoteric items
- Popularity bias:
Cannot recommend items to someone with
unique taste
Tends to recommend popular items
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Hybrid Methods

Implement two or more different
recommenders and combine predictions

Perhaps using a linear model

Add content-based methods to
collaborative filtering

Item profiles for new item problem
Demographics to deal with new user problem
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Remarks & Practical Tips
- Evaluationv

- Error metrics
- Complexity / Speed




Evaluation

movies

A
v

users
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Evaluation

movies

users

Test Data Set

/
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Evaluating Predictions

Compare predictions with known ratings

Precision at top 10:
% of those in top 10
Rank Correlation:
Spearman’s correlation between system’s and user’s complete rankings

Another approach: 0/1 model
Coverage:
Number of items/users for which system can make predictions
Precision:
Accuracy of predictions

Receiver operating characteristic (ROC)
Tradeoff curve between false positives and false negatives
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Problems with Error Measures

Narrow focus on accuracy sometimes
misses the point

Prediction Diversity
Prediction Context

Order of predictions
In practice, we care only to predict high

ratings:

RMSE might penalize a method that does well
for high ratings and badly for others

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 41



Collaborative Filtering: Complexity

Expensive step is finding k most similar
customers: O(|X])
Too expensive to do at runtime

Could pre-compute
Naive pre-computation takes time O(k - | X])

X ... set of customers

We already know how to do this!

Near-neighbor search in high dimensions (LSH)
Clustering
Dimensionality reduction
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Tip: Add Data

Leverage all the data

Don’t try to reduce data size in an
effort to make fancy algorithms work

Simple methods on large data do best

Add more data
e.g., add IMDB data on genres

More data beats better algorithms

http://anand. typepad.com/datawocky/2008/03/more-data-usual.html
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