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Online Algorithms

Classic model of algorithms

You get to see the entire input, then compute
some function of it

In this context, “offline algorithm”

Online Algorithms

You get to see the input one piece at a time, and
need to make irrevocable decisions along the way

Similar to the data stream model
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Online Bipartite Matching




Example: Bipartite Matching

Nodes: Boys and Girls; Edges: Preferences
Goal: Match boys to girls so that maximum
number of preferences is satisfied
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Example: Bipartite Matching

M = {(1,a),(2,b),(3,d)} is a matching
Cardinality of matching= |[M| =3
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Example: Bipartite Matching

M = {(1,c),(2,b),(3,d),(4,a)} is a
perfect matching

Perfect matching ... all vertices of the graph are matched
Maximum matching ... a matching that contains the largest possible number of matches
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Matching Algorithm

Problem: Find a maximum matching for a
given bipartite graph

A perfect one if it exists

There is a polynomial-time offline algorithm
based on augmenting paths (Hopcroft & Karp 1973,
see http://en.wikipedia.org/wiki/Hopcroft-Karp _algorithm)

But what if we do not know the entire
graph upfront?
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Online Graph Matching Problem

Initially, we are given the set boys
In each round, one girl’s choices are revealed

That is, girl’s edges are revealed
At that time, we have to decide to either:

Pair the girl with a boy
Do not pair the girl with any boy

Example of application:
Assigning tasks to servers
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Online Graph Matching: Example

(1,a)
(2,b)
(3,d)

ive Datasets, http://www.mmds.org



Greedy Algorithm

Greedy algorithm for the online graph
matching problem:

Pair the new girl with any eligible boy

If there is none, do not pair girl

How good is the algorithm?
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Competitive Ratio

For input I, suppose greedy produces
matching M, .4, While an optimal
matching is M, ,,

Competitive ratio =
min all possible inputs | (I M greedyl / I M optl )

(what is greedy’s worst performance over all possible inputs /)
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Analyzing the Greedy Algorithm

Consider a case: M c.q* M, : W 2
Consider the set G of girls 2 /) b
matched in M, but notin M, ..., 3e< c

~

Then every boy B adjacent to girls ™

o d
in G is already matched in M,,..,,: B-i00;  G=@;
If there would exist such non-matched
(by M, eeq,) POY adjacent to a non-matched
girl then greedy would have matched them
Since boys B are already matched in M., then

(1) [Mgreeqy|> | B

greedy
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Analyzing the Greedy Algorithm

Mo t
Summary so far: . W a
Girls G matched in M,,, but notin M. / b

(1) |Mgreeqy|> | B 30// ;
There are at least |G| such boys 4 =9 d
G| < |B|) otherwise the optimal °#®® ¢
algorithm couldn’t have matched all girls in G

So: |G| < |B| < |[M,,peq,]

By definition of G also: [Mg,,| < [Mgeeqy| + |G
Worst case is when |G| = |B| = |M
M| <2|M

——

greedyl
greedyl then |Mgreedy|/|Mopt| 2 1/2
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Worst-case Scenario
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Web Advertising




History of Web Advertising
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Performance-based Advertising

Introduced by Overture around 2000
Advertisers bid on search keywords

When someone searches for that keyword, the
highest bidder’s ad is shown

Advertiser is charged only if the ad is clicked on

Similar model adopted by Google with some
changes around 2002

Called Adwords
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Ads vs. Search Results

Web
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Performance-based advertising works!
Multi-billion-dollar industry

Interesting problem:
What ads to show for a given query?

(Today’s lecture)

If | am an advertiser, which search terms
should | bid on and how much should | bid?

(Not focus of today’s lecture)
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Adwords Problem

Given:
1. A set of bids by advertisers for search queries
2. A click-through rate for each advertiser-query pair
3. A budget for each advertiser (say for 1 month)

4. A limit on the number of ads to be displayed with
each search query
Respond to each search query with a set of

advertisers such that:

1. The size of the set is no larger than the limit on the
number of ads per query

2. Each advertiser has bid on the search query

3. Each advertiser has enough budget left to pay for
the ad if it is clicked upon
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Adwords Problem

A stream of queries arrives at the search
engine: q, q,, ...

Several advertisers bid on each query
When query g; arrives, search engine must
pick a subset of advertisers whose ads are
shown

Goal: Maximize search engine’s revenues

Simple solution: Instead of raw bids, use the
“expected revenue per click” (i.e., Bid*CTR)
Clearly we need an online algorithm!
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The Adwords Innovation

Advertiser Bid CTR Bid * CTR
A $1.00 1% 1 cent
B $0.75 2% 1.5 cents
C $0.50 2.5% 1.125 cents

Click through Expected
rate revenue
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The Adwords Innovation

Advertiser Bid CTR Bid * CTR
B $0.75 2% 1.5 cents
C $0.50 2.5% 1.125 cents
A $1.00 1% 1 cent
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Complications: Budget

Two complications:
Budget
CTR of an ad is unknown

Each advertiser has a limited budget

Search engine guarantees that the advertiser
will not be charged more than their daily budget
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Complications: CTR

CTR: Each ad has a different likelihood of
being clicked

Advertiser 1 bids S2, click probability = 0.1
Advertiser 2 bids S1, click probability = 0.5

Clickthrough rate (CTR) is measured historically

Very hard problem: Exploration vs. exploitation

Exploit: Should we keep showing an ad for which we have
good estimates of click-through rate

or

Explore: Shall we show a brand new ad to get a better
sense of its click-through rate
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Greedy Algorithm

Our setting: Simplified environment

T
A
A

nere is 1 ad shown for each query
| advertisers have the same budget B

| ads are equally likely to be clicked

Value of each ad is the same (=1)

Simplest algorithm is greedy:

For a query pick any advertiser who has

bid 1 for that query
Competitive ratio of greedy is 1/2
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Bad Scenario for Greedy

Two advertisers A and B

A bids on query x, B bids on x and y

Both have budgets of $4
Query stream: XXXXyyyy

Worst case greedy choice: BBBB _
Optimal: AAAABBBB

Competitive ratio =%
This is the worst case!

Note: Greedy algorithm is deterministic — it always
resolves draws in the same way
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BALANCE Algorithm [MSVV]

BALANCE Algorithm by Mehta, Saberi,
Vazirani, and Vazirani

For each query, pick the advertiser with the
largest unspent budget

Break ties arbitrarily (but in a deterministic way)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 28



Example: BALANCE

Two advertisers A and B

A bids on query x, B bids on xand y
Both have budgets of $4

Query stream: XXxXXyyyy

BALANCE choice:ABABBB _
Optimal: AAAABBBB

In general: For BALANCE on 2 advertisers
Competitive ratio = %
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Analyzing BALANCE

Consider simple case (w.l.0.g.):
2 advertisers, A, and A,, each with budget B (>1)
Optimal solution exhausts both advertisers’ budgets

BALANCE must exhaust at least one
advertiser’s budget:

If not, we can allocate more queries

Whenever BALANCE makes a mistake (both advertisers bid
on the query), advertiser’s unspent budget only decreases

Since optimal exhausts both budgets, one will for sure get
exhausted

Assume BALANCE exhausts A,’s budget,
but allocates x queries fewer than the optimal

Revenue: BAL =2B - x
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Analyzing Balance

:

[ x

A;
X
y

A

; A, Not
used
X
1 1 i
A, A, Not

used

Bl Queries allocated to A, in the optimal solution

Queries allocated to A, in the optimal solution

Optimal revenue = 2B
Assume Balance gives revenue = 2B-x = B+y

Unassigned queries should be assigned to A,
(if we could assign to A; we would since we still have the budget)
Goal: Show we have y > x
Case 1) < "2 of A,’s queries got assigned to A,
theny @ B/2
— Case 2) > 2 of A,’s queries got assigned to A,
thenx < B/2and x+y =B
B Balance revenue is minimum for x = y = B/2
- Minimum Balance revenue = 3B/2

Competitive Ratio = 3/4
BALANCE exhausts A,'s budget
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BALANCE: General Result

In the general case, worst competitive ratio
of BALANCE is 1-1/e = approx. 0.63

Interestingly, no online algorithm has a better
competitive ratio!

Let’s see the worst case example that gives
this ratio
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Worst case for BALANCE

N advertisers: A, A,, ... A,

Each with budget B> N
Queries:

N-B queries appear in N rounds of B queries each
Bidding:

Round 1 queries: bidders A;, A,, ..., Ay

Round 2 queries: bidders  A,, A,, ..., Ay

Round i queries: bidders A, ..., Ay
Optimum allocation:
Allocate round i queries to A,

Optimum revenue N-B
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BALANCE Allocation

B/(N-2)

B/(N-1)
BN N . B [ B/N
A, A, A, Ana Ay

BALANCE assigns each of the queries in round 1 to N advertisers.

After k rounds, sum of allocations to each of advertisers A,,...,A is

1 B
Sk = Spi1 = =Sy =2kl oy

If we find the smallest k such that S, =B, then after k rounds
we cannot allocate any queries to any advertiser
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BALANCE: Analysis

B/1 B/2 B/3 .. B/(N-(k-1)) ... B/(N-1) B/N

+—>

Sl

Sk=B

1/1 1/2 1/3 .. 1/(N-(k-1)) ... 1/(N-1) 1/N

+—>

Sl

Sk=1
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BALANCE: Analysis

Fact: H, = ).;-11/i = In(n) for large n
Result due to Euler

1/1 1/2 1/3 .. 1/(N-(k-1)) ... 1/(N-1) 1/N

-
»

d
<4—

In(N)

In(N)-1 " S =1
Sy =1impliessHy_, =In(N)—1 = ln(%)
We also know: Hy_; = In(N — k)

N
So:N — k =-— N terms sum to In(N).
e 1 Last k terms sum to 1.
Then: k = N(l — —) First N-k terms sum
e to In(N-k) but also to In(N)-1
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BALANCE: Analysis

So after the first k=N(1-1/e) rounds, we
cannot allocate a query to any advertiser

Revenue = B:-N (1-1/e)

Competitive ratio = 1-1/e
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General Version of the Problem

Arbitrary bids and arbitrary budgets!

Consider we have 1 query q, advertiser i
Bid = x;

Budget = b,

In a general setting BALANCE can be terrible
Consider two advertisers A; and A,
A;:x,=1b,=110
A, x,=10, b, =100
Consider we see 10 instances of q
BALANCE always selects A; and earns 10
Optimal earns 100
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Generalized BALANCE

Arbitrary bids: consider query q, bidder i
Bid = x;
Budget = b,

Amount spent so far = m,

Fraction of budget left over f; = 1-m /b,
Define w{q) = x(1-e7i)

Allocate query g to bidder i with largest
value of ¥(q)

Same competitive ratio (1-1/e)
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