Note to other teachers and users of these slides: We would be delighted if you found this our
material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site:
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What is Data Mining?
Knowledge discovery from data
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Data contains value and knowledge
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Data Mining

But to extract the knowledge
data needs to be

Stored
Managed
And ANALYZED < this class

Data Mining = Big Data =
Predictive Analytics = Data Science
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Good news: Demand for Data Mining

Demand for deep analytical talent in the United States could be

50 to 60 percent greater than its projected supply by 2018
Supply and demand of deep analytical talent by 2018
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1 Other supply drivers include attrition (-), iimmigration (+), and reemploying previously unemployed deep analytical talent (+).

SOURCE: US Bureau of Labor Statistics; US Census; Dun & Bradstreet; company interviews; McKinsey Global Institute analysis
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What is Data Mining?

Given lots of data

Discover patterns and models that are:
Valid: hold on new data with some certainty
Useful: should be possible to act on the item
Unexpected: non-obvious to the system

Understandable: humans should be able to
interpret the pattern
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Data Mining Tasks

Descriptive methods

Find human-interpretable patterns that
describe the data

Example: Clustering

Predictive methods

Use some variables to predict unknown
or future values of other variables

Example: Recommender systems
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Meaningfulness of Analytic Answers

A risk with “Data mining” is that an analyst
can “discover” patterns that are meaningless
Statisticians call it Bonferroni’s principle:

Roughly, if you look in more places for interesting
patterns than your amount of data will support,

you are bound to find crap
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Meaningfulness of Analytic Answers

Example:
We want to find (unrelated) people who at least twice
have stayed at the same hotel on the same day

10° people being tracked

1,000 days

Each person stays in a hotel 1% of time (1 day out of 100)
Hotels hold 100 people (so 10° hotels)

If everyone behaves randomly (i.e., no terrorists) will the
data mining detect anything suspicious?

Expected number of “suspicious” pairs of people:

250,000

... too many combinations to check — we need to have some
additional evidence to find “suspicious” pairs of people in
some more efficient way
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What matters when dealing with data?

Challenges

Usage
Quality
Context
Streaming

Scalability
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Visualize

Data Operators
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Data Mining: Cultures

Data mining overlaps with:
Databases: Large-scale data, simple queries
Machine learning: Small data, Complex models

CS Theory: (Randomized) Algorithms
Different cultures:

To a DB person, data mining is an extreme form of
analytic processing — queries that
examine large amounts of data

Result is the query answer

To a ML person, data-mining
is the inference of models
Result is the parameters of the model

In this class we will do both!
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This Class: CS246

This class overlaps with machine learning,
statistics, artificial intelligence, databases
but more stress on
Scalability (big data)
Algorithms

Machine

Learning

Computing architectures

Automation for handling
large data

Data Mining

Database
systems
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What will we learn?

We will learn to mine different types of data:
Data is high dimensional
Data is a graph
Data is infinite/never-ending

Data is labeled
We will learn to use different models of

computation:
MapReduce
Streams and online algorithms

Single machine in-memory
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What will we learn?

We will learn to solve real-world problems:
Recommender systems
Market Basket Analysis
Spam detection

Duplicate document detection
We will learn various “tools”:

Linear algebra (SVD, Rec. Sys., Communities)
Optimization (stochastic gradient descent)
Dynamic programming (frequent itemsets)
Hashing (LSH, Bloom filters)
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How It All Fits Together
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How do you want that data?
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About the Course




2014 CS246 Course Staff

We have 9 great TAs!

Sean Choi (Head TA), Sumit Arrawatia, Justin Chen,
Dingyi Li, Anshul Mittal, Rose Marie Philip, Robi
Robaszkiewicz, Le Yu, Tongda Zhang

Jure: Wednesdays 9-10am, Gates 418
See course website for TA office hours
For SCPD students we will use Google Hangout

We will post Google Hangout links on Piazza
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Course Logistics

Course website:
http://cs246.stanford.edu

Lecture slides (at least 30min before the lecture)

Homeworks, solutions
Readings
Book
with A. Rajaraman and J. Ullman
Free online:
http://www.mmds.org
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Logistics: Communication

Piazza Q&A website:

https://piazza.com/class#twinter2013/cs246

Use Piazza for all questions and public communication
with the course staff

If you don’t have @stanford.edu email address, send us
your email and we will manually register you to Piazza

For e-mailing us, always use:
cs246-winl1213-staff@lists.stanford.edu

We will post course announcements to
Piazza (make sure you check it regularly)

Auditors are welcome to sit-in & audit the class
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Work for the Course

(1+)4 longer homeworks: 40%
Theoretical and programming questions
HWO (Hadoop tutorial) has just been posted

How to submit?

Homework write-up:
Stanford students: In class or in Gates submission box
SCPD students: Submit write-ups via SCPD
Attach the HW cover sheet (and SCPD routing form)

Upload code:

Put the code for 1 question into 1 file and
submit at: http://snap.stanford.edu/submit/
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Work for the Course

Short weekly quizzes: 20%
Short e-quizzes on Gradiance

You have exactly 7 days to complete it
No late days!

First quiz is already online

Final exam: 40%
Friday, March 22 12:15pm-3:15pm

It’s going to be fun and hard work. ©
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Course Calendar

Homework schedule:

01/08, Tue HWO
01/10, Thu HW1

01/15, Tue HWO
01/24, Thu HW2 HW1
02/07, Thu HW3 HW2
02/21, Thu HW4 HW3
03/07, Thu HW4

2 late “days” (late periods) for HWs for the quarter:
1 late day expires at the start of next class
You can use max 1 late day per assighment
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(CS161)

Dynamic programming, basic data structures
(CS109 or Stat116)

Moments, typical distributions, MLE, ...
(CS107 or CS145)

Your choice, but C++/Java will be very useful

We provide some background, but
the class will be fast paced
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Recitation Sessions

3 recitation sessions:

Hadoop: Thurs. 1/10, 5:15-6:30pm
We prepared a virtual machine with Hadoop preinstalled
HWO helps you write your first Hadoop program

Review of probability&stats: 1/17, 5:15-6:30pm
Review of linear algebra: 1/18, 5:15-6:30pm

All sessions will be held in Thornton 102,
Thornton Center (Terman Annex)

Sessions will be video recorded!
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What's after the class

InfoSeminar (CS545):

http://i.stanford.edu/infoseminar
Great industrial & academic speakers

Topics include data mining and large scale data
processing

CS341: Project in Data Mining (Spring 2013)
Research project on big data
Groups of 3 students

We provide interesting data, computing resources
(Amazon EC2) and mentoring

We have big-data RA positions open!
| will post details on Piazza
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3 To-do items

3 To-do items for you:
Register to Piazza

Complete HWO0: Hadoop tutorial

HWO should take your about 1 hour to complete
(Note this is a “toy” homework to get you started. Real
homeworks will be much more challenging and longer)

Register to Gradiance and complete the first quiz
Use your SUNet ID to register! (so we can match grading records)
You have 7 days (sharp!) to do so
Quizzes typically take several hours

Additional details/instructions at
http://cs246.stanford.edu
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